40,899 research outputs found

    Effect of Edwardsiella ictaluri Infection on Plasma Corticosterone Levels in Channel Catfish (Ictalurus punctatus)

    Get PDF
    Channel catfish (Ictalurus punctatus) were innoculated with a new host specific bacterium, Edwardsiella ictaluri, to observe the influence of bacterial infection on plasma corticosterone levels at various temperatures. The fish were innoculated intraperitoneally. The infected fish were separated from the controls. Plasma corticosterone concentrations were determined by radioimmunoassay. The plasma corticosterone concentrations in non-innoculated catfish were about 6.15 ng/ml and nearly 5.63 ng/ml in the infected fish. The lower level of the hormone in the infected catfish was not significantly different from the control level. High temperature was a stress factor which increased plasma corticosterone levels whereas E. ictaluri retarded the response of corticosterone secreting cells of the fish kidneys

    Eigenvalue Distributions for a Class of Covariance Matrices with Applications to Bienenstock-Cooper-Munro Neurons Under Noisy Conditions

    Full text link
    We analyze the effects of noise correlations in the input to, or among, BCM neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input LGN neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.Comment: 7 pages, 7 figure

    Shape invariant hypergeometric type operators with application to quantum mechanics

    Full text link
    A hypergeometric type equation satisfying certain conditions defines either a finite or an infinite system of orthogonal polynomials. The associated special functions are eigenfunctions of some shape invariant operators. These operators can be analysed together and the mathematical formalism we use can be extended in order to define other shape invariant operators. All the considered shape invariant operators are directly related to Schrodinger type equations.Comment: More applications available at http://fpcm5.fizica.unibuc.ro/~ncotfa

    Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels

    Get PDF
    Recent magnetotransport experiments on high mobility two-dimensional electron systems have revealed many-body electron states unique to high Landau levels. Among these are re-entrant integer quantum Hall states which undergo sharp transitions to conduction above some threshold field. Here we report that these transitions are often accompanied by narrow- and broad-band noise with frequencies which are strongly dependent on the magnitude of the applied dc current.Comment: 4 pages, 3 figure

    Metastable Resistance Anisotropy Orientation of Two-Dimensional Electrons in High Landau Levels

    Get PDF
    In half-filled high Landau levels, two-dimensional electron systems possess collective phases which exhibit a strongly anisotropic resistivity tensor. A weak, but as yet unknown, rotational symmetry-breaking potential native to the host semiconductor structure is necessary to orient these phases in macroscopic samples. Making use of the known external symmetry-breaking effect of an in-plane magnetic field, we find that the native potential can have two orthogonal local minima. It is possible to initialize the system in the higher minimum and then observe its relaxation toward equilibrium.Comment: 5 pages, 3 figures. Figure references corrected. Version accepted for publication in Physical Review Letter

    Nuclear magnetic resonance probes for the Kondo scenario for the 0.7 feature in semiconductor quantum point contact devices

    Full text link
    We propose a probe based on nuclear relaxation and Knight shift measurements for the Kondo scenario for the "0.7 feature" in semiconductor quantum point contact (QPC) devices. We show that the presence of a bound electron in the QPC would lead to a much higher rate of nuclear relaxation compared to nuclear relaxation through exchange of spin with conduction electrons. Furthermore, we show that the temperature dependence of this nuclear relaxation is very non-monotonic as opposed to the linear-T relaxation from coupling with conduction electrons. We present a qualitative analysis for the additional relaxation due to nuclear spin diffusion (NSD) and study the extent to which NSD affects the range of validity of our method. The conclusion is that nuclear relaxation, in combination with Knight shift measurements, can be used to verify whether the 0.7 feature is indeed due to the presence of a bound electron in the QPC.Comment: Published version. Appears in a Special Section on the 0.7 Feature and Interactions in One-Dimensional Systems. 16 page

    Oceanic stochastic parametrizations in a seasonal forecast system

    Full text link
    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.Comment: 24 pages, 3 figure

    Effects of Disorder and Momentum Relaxation on the Intertube Transport of Incommensurate Carbon Nanotube Ropes and Multiwall Nanotubes

    Full text link
    We study theoretically the electrical transport between aligned carbon nanotubes in nanotube ropes, and between shells in multiwall carbon nanotubes. We focus on transport between two metallic nanotubes (or shells) of different chiralities with mismatched Fermi momenta and incommensurate periodicities. We perform numerical calculations of the transport properties of such systems within a tight-binding formalism. For clean (disorder-free) nanotubes the intertube transport is strongly suppressed as a result of momentum conservation. For clean nanotubes, the intertube transport is typically dominated by the loss of momentum conservation at the contacts. We discuss in detail the effects of disorder, which also breaks momentum conservation, and calculate the effects of localised scatterers of various types. We show that physically relevant disorder potentials lead to very dramatic enhancements of the intertube conductance. We show that recent experimental measurements of the intershell transport in multiwall nanotubes are consistent with our theoretical results for a model of short-ranged correlated disorder.Comment: References adde
    • …
    corecore